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1. INTRODUCTION

One of the easiest to state, yet hardest to solve, enumeration problems
is that of determining CN, the number of N-step self-avoiding walks in a
lattice. Such is the notoriety of this problem that it is mentioned in the
combinatorics entry of Encyclopedia Britannica.

An N-step walk on the lattice is a sequence of points -X0 = 0, *i>-, XN
such that x, and xi+i are nearest neighbors. It is a self-avoiding walk if all
the x, are distinct: x , /x j t 0<i<j^N.

There is an extensive literature on this subject.''~18) An excellent
exposition can be found in Madras and Slade.(15) A recent breakthrough is
Hara and SladeV13' determination of the asymptotic behavior of CN for
dimensions d>4.

Even the computation of CN for small values of TV is a formidable com-
putational problem. The current record, for the 2D square lattice, is due to
Conway and Guttmann,(2) who computed it for /VX 51.
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Suppose our lattice is Zd. We would like to know the number, cffl, of
self-avoiding walks of length N. By examining the set of all walks that
avoid retracing the most immediate step (which later will be referred to as
memory =2) and walks that only take steps in one way along each direc-
tion, we find the trivial bounds, dN ^ c ( d ) ^2d(2d - \)N~l. It<12 '15) is well
known that for every lattice there exists a constant fi(d\ the connective
constant of the lattice, such that limn_00(c^ ))1/Ar = /u

(d).
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2. PRELIMINARIES

Definition 1.0. Let W(d) denote the set of all walks on Zd.

We will denote a forward (resp. backward) step in the x, direction by
/ (resp. — / ) . The following are examples of walks. For example,

and

Note. Throughout this paper, all walks discussed will be on the rec-
tangular (hypercubic) lattice unless otherwise specified. As such, we will use
H(d) to denote the connective constant for self-avoiding walks on Zd.

Definition 1 .1 . Let X(word) denote the length of word and
wt(word)=s^(word\

Definition 1.2. If S is a set of walks, then we denote the weight of
S as

Definition 1.3. Let W ( d ) i = W ( d ) x { i } .

It is trivial to see that the number of walks of n steps in dimension d
is (Id}". Here we demonstrate this fact as motivation for what is to come.
The generating function for walks in dimension d is wt(W(d)). We have



Let a be a walk in W(d\ Unless a is the empty walk (n = 0), CT will have
a last step. Let the last step of a be ;', so that a = a}i where er, is made up
of the first n — \ steps of a. Then CT, e H7'1". Thus

and

Thus the generating function for walks in dimension d is indeed

2. MISTAKES

Definition 2.0. A mistake is a walk that begins and ends at the
same point and is otherwise self-avoiding.

Examples of mistakes are 1, 2, —1, —2 and —3, 3. There is a close
connection between the number of mistakes of a given size and the number
of self-avoiding polygons of a given size. Indeed, the number of mistakes of
length n (for n > 2) is exactly 2n times the number of self-avoiding polygons
of length n. If a walk is not self-avoiding, it will have at least one mistake
and may have more mistakes, some of which may interact or overlap in
some way. Furthermore, the set of walks with no mistakes is exactly the set
of self-avoiding walks. This leads us to turn to Goulden and Jackson's
method for counting words that avoid a prescribed set of undesirable
sequences as subwords (factors).

I will now give a brief review of this powerful method as it applies to
counting self-avoiding walks. A much more general discussion will be given
in ref. 16.

Definition 2.1. A marked walk is a walk in which a subset of its
mistakes is marked.
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A marked walk may have all or none of its mistakes marked. If a walk
has all of its mistakes marked then we say that it is fully marked. For
example, all of the following are (different) marked walks;

(A marked mistake is indicated by either an overline or an underline,
for readability. There is no distinction between an underlined and an over-
lined mistake.)

Definition 2.2. Let W(d) denote the set of all walks in dimension
d with marked mistakes.

Definition 2.3. For <re W(d) let y(a) denote the number of mis-
takes of a that are marked.

For example, y(a) = 2, y(b) = 2, and y(c) = 3.

Definition 2.4. For a e W(d) let W(a) = (-1 )*"> s*'\

The weights of our examples are, ~wt(a) = s13, ~wi(b) = sn and
wt(c) = —s".

Definition 2.5. For a set, S, let wt(S) = '£aeS wf(a).

Lemma. The generating function for self-avoiding walks on dimen-
sion d is wt( W(d)).

Suppose ae Ww has no mistakes (it is self-avoiding) then a will be
found in W(d} only once and will contribute si(a) to w7( W(d)).

Suppose a e W(d) has k mistakes. Then a contributes (-1Y (*) s*a) to
wt(W(d)) for each O^r^k. This contribution results from all possible
markings of r mistakes of a. Summing, we have

Thus, CT'S contribution to w t ( W ( d ) ) is 0.

In the spirit of (1) we will try to compute the generating function for
self-avoiding walks by partitioning the set W(d\ Each non-empty marked
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walk in W(d) either terminates with a marked mistake or doesn't. In our
examples above, the last step of a is — 1, and the last steps of b and c are
parts of marked mistakes. We wish to retain the information we get from
wf in order to compute a generating function. Hence we must truncate b
and c by removing the entire terminating cluster of mistakes from each
walk. We will call this cluster of mistakes an L-cluster. We use &(d) to
denote the set of all L-clusters on dimension d. Both of these are formally
defined below. So we have

3. L-CLUSTERS

As we have seen, if we want to compute the generating function for
self-avoiding walks, we must compute wt(y(d)).  y(d) is the set of all
clusters of mistakes on dimension d.

Definition 3.1. A cluster of mistakes is a marked walk which has
the following properties

(a) it is fully marked

(b) every letter contributes to at least one mistake

(c) its mistakes are fully overlapping.

In order to compute vvf(y) we separate & into sets with common
terminating mistakes.

and

The generating function for self-avoiding walks on dimension d is

So far our treatment is similar to the Lace Expansion of Brydges and
Spencer (restricted to the finite-memory case), see ref. 14. Now it diverges.
The Lace Expansion involves the extra step of grouping the L-clusters
according to their laces, while in the Goulden-Jackson method, we group
them according to their rightmost mistake.
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Definition 3.2. Let S[m~\ denote the set of all L-clusters which
terminate with the mistake m.

We have

If we obtain such an equation for each and every mistake, we will have a
system of linear equations which we can solve. The only problem we run
into when studying self-avoiding walks is that the number of mistakes is
infinite. We will address this problem by imposing a finite memory on our
set of walks.

4. FINITE MEMORY

The set of all mistakes is infinite. As a result, it is very difficult to
enumerate self-avoiding walks. Fisher and Sykes(5) suggested the study of
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In order to keep track of which mistakes interact in clusters, we define the
prefix and suffix of a mistake.

Definition 3.3. The suffix of length A: of a mistake m is the last k
steps of the mistake m.

Definition 3.4. The prefix of length k of a mistake m is the first k
steps of the mistake m.

If p is a walk of length k then we will say that a particular mistake m
has the suffix (prefix) p if the last (first) k steps of m coincides with p.

If  #  is  a  c luster  in  S ' [m] then ei ther  <^ = m or  ^  = ^s  such that  s  is
an suffix of m and ^ is a cluster in S\_ m' ] where m' and m overlap. More
specifically, if m is a mistake of length t and there exists a mistake, m', such
that the suffix of length k of m' is the same as the prefix of length k of m
then every cluster in S[m'] may be appended with the suffix of length t — k
of m to form a cluster in S[m~\. Indeed, every cluster in S[m~\ other than
m itself has a second to last mistake which overlaps m. Furthermore, if
^6/Sfm] and ^eS[m'] are two such clusters where m and m' overlap in
k steps then vvt(^) = (-1) sWm)~k) wt(&). Hence, we may write



finite memory. However, their approach was "Naive Markovian" in the
sense of ref. 16, while the present approach takes advantage of the powerful
Goulden-Jackson method.

We develop a superset for the set of self-avoiding walks of n steps by
imposing a finite memory on the set of walks. A walk is said to be self-
avoiding with memory = r if every Subwalk of r steps is self-avoiding. Con-
sidering finite memory allows us to watch out for only a finite number of
mistakes. Further, since the set of walks that are self-avoiding with
memory = r is a superset of the set of self-avoiding walks, n(d) (the connec-
tive constant for walks that are self-avoiding with memory = r on dimen-
sion d) is an upper bound for f i ( d \ In fact, fi(d} converges to /z(</).(15)

There are only Id mistakes for walks that are self-avoiding with
memory = 2. These are

From this we obtain our first estimate for the value of the connective
constant n(d\ Recall that n(d) is equal to the inverse of the smallest positive
root of the denominator of a rational function. Thus, as expected, here
/4rf) = 2d—1 and we have rederived the obvious bound mentioned above,
H(d)^2d-\.

New Upper Bounds for the Connective Constants of SAWs 877

We see that the mistake [/, — j] overlaps the mistake [ — / , / ' ] and no
others. So the generating function for the clusters ending with [/', —/] is

This gives us a set of Id linear equations in Id unknowns (the Cllt _,]). The
solutions are

and the generating function (see (2) and (3)) for walks which are self-
avoiding with memory = 2 is



5. SYMMETRY AND MISTAKE CLASSES

The mistakes for a given dimension and memory can be partitioned
into classes of mistakes. We say that 2 mistakes, tr^ and m2 are similar (or
in the same class) if nij may be transformed into m2 by the action of a
signed permutation of {+ 1,..., ±d} (i.e., an isometry of Zd). For example,
the mistakes [1,2, -1, -2] and [1, -2, -1,2] are similar and [1,2, -1,
3, -2, -3] and [3, -2, -3, 4, 2, -4] are similar.

As was demonstrated in the previous section, it is not necessary to
keep track of every mistake in order to enumerate walks that are self-
avoiding with finite memory. By exploiting the symmetries of the set of
walks, we need only keep track of one from each class which will represent
all in that class in the computations. It would be convenient to have a
canonical form which we choose from each class.

The obvious choice for canonical mistake is the first lexicographically.
Thus the mistake from the class with —1, 2, 1, —2 which we chose is 1,
2, — 1, -2. Notice that here we consider negative numbers to be
lexicographically greater than positive numbers.

One can obtain a list of all canonical mistakes in one of two ways. If
we have a list of all self-avoiding polygons of length k then we may obtain
a list of all mistakes of length k and dividing them into classes, we can
choose one representative from each class. Alternatively, we use an algo-
rithm that generates all mistakes of length k which have the property that
the first step in direction / is before the first step in direction j for all
0 < i < j, and the first step in direction i is always before the first step in
direction —;' for all i > 0.

Such an algorithm is easy to construct and can be found in the Maple
package described at the end of this paper.

Before proceeding we must prove

Lemma. The set of all mistakes of length k which have the property
that the first step in direction / is before the first step in direction j for
all 0 < / < j, and the first step in direction / is always before the first step
in direction — /' for all i > 0 is equal to the set of canonical mistakes of
length k. We shall call such a set of mistakes Mk.

To prove this lemma, we must prove two things. First, that each mis-
take in Mk is canonical and second, that every (non-canonical) mistake is
equivalent to some mistake in Mk.

According to our definition, a mistake is canonical if it is the least,
lexicographically in its equivalence class. If m 6 Mk then if we permute the
directions of m in any way, we will get a mistake that is greater lexico-
graphically than m. Indeed, any permutation (except the identity) will have
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a lowest direction that it changes, call this direction j which will be
replaced with another direction j', where j1 > j.

So, Mk contains only canonical mistakes.
Suppose m is a canonical mistake. Let i and j be directions that m

assumes with 0 < / < / Then the first step in direction / must precede the
first step in direction / Otherwise, one could permute / and j to form a
similar mistake which is less than m lexicographically. Furthermore, if m
has a step in the —;' direction before its first step in the / direction for any
/ > 0, then one could permute / and —;' to form a mistake that lexicographi-
cally less. Thus m e M k . |

6. MEMORY = 4

There are two mistake classes in memory = 4 whose canonical mis-
takes are m1 = [l, —1] and m2 = [ l ,2, —1, —2]. From these, we derive
the equations

Note that the we have a system of two equations with two unknowns
while Fisher and Sykes had a system of three equations with three
unknowns'5' (p. 57, Eq. (A.3)). The discrepancy in the sizes is much more
pronounced for higher memory.
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The solutions to these equations are

This leads to the following generating function for memory = 4, whose
denominator was first derived by Fisher and Sykes.(5)



Taking the inverse of the smallest root of the denominator we have
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where

7. MEMORY = 6

There are 9 mistake classes for memory = 6. Their canonical mistakes
are [1,-1], [1,2,-1,-2], [1,2,-1,-1,-2, 1], [1,1,2,-1,
-1,-2], [1,2,2,-1,-2,-2], [1,2,3,-1,-3,-2], [1,2,3,-2,
-1,-3], [1,2,-1,3,-2,-3] and [1, 2, 3,-1,-2,-3]. Some of
these mistakes do not exist in dimension 2. However, we are using these to
canonically represent specific mistake classes which happen to be empty in
dimension 2. For example, in dimension 2, the mistake class represented by
the mistake [1, 2, 3, — 1, —2, —3] is empty. So we proceed unhindered.

Definition 7.1. For a walk, w, let dim(w) denote the number of
dimensions that w spans.

Thus dim([l,2, 3,-2,-3, 1,3]) = 3, dim([9, 8,-9,-9]) = 2 and
dim([2, 2 ,2 ,2]) = !.

Definition 7.2. Let

There are exactly 2d™w-*m^\diJ(-^(p))(dim(m)-dim(p))\ mis-
takes similar to m which have the suffix p exactly. This is due to the fact
that every mistake similar to m is the result of the action of a signed per-
mutation on m. Every mistake that has the suffix p exactly must be the
result of mapping the last y(p) steps of m to those of p. There are
dim(m) —dim(p) directions that have not been mapped and these may be
mapped to any direction other than those specified in p. Thus there are
2dira(m)-dim('>)(dim1m)dim^(p))(dim(m)-dim(p))! different mappings each of
which produces a different mistake similar to m which has the suffix p
exactly.



We write

Here, the Fs are defined as above, for example,

When we solve this system, and make the necessary substitutions in the
generating function, we find that
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8. TAYLOR EXPANSIONS

Computing the exact generating function for a given memory and
general dimension can be cumbersome, we can simplify the task for greater
memories by specifiying the dimension we are interested in, for example;
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This, however, also becomes quite complicated, as the above function
demonstrates.

Instead of calculating the exact generating function for dimension d and
memory k, we will merely compute a large number of terms of the Taylor
expansion of the generating function. This will allow us to do two things.



First, we will have an exact enumeration for the number of walks on dimen-
sion d that are self-avoiding with memory A: up to a certain number of steps
(however far we expand the generating function). More important is that our
Taylor expansion will allow us to compute a bound for the connective con-
stant for walks on dimension d with memory k. Hence, we will have a bound
for self-avoiding walks on dimension d.

We proceed by extracting the necessary information systematically from
the cluster generating functions, C[m].

From (2), (3) and (4) we have

If we want to know the coefficient of s' of F(^\ we need only determine the
coefficients of C[m] up to s1. If we carefully examine the equations for the
cluster generating functions, we see that to compute the coefficient of s' in
C[m], we only need to keep track of the coefficients of sj of the other cluster
generating functions for i—k^j<i. In fact, we need not keep track of C[m]

at all if we have sufficient information about the 7p's. It is this strategy that
we adopt to compute the coefficient of Fjf* for there is much less overhead
in the computation of the F's than that of the C's. In order to compute the
C's, we need information about the interaction of every C with every other
C. In order to compute the F's, we need only keep a list of mistakes some-
where in memory. C[m] contributes to 7p only if p is a suffix of m. Likewise,
Yv contributes to C[m] only if p is a prefix of m. The result of this manipula-
tion allows us to compute the expansion of the generating function quickly
and through clever programming, we can eliminate the need to compute the
C's altogether, speeding our computation even more.

The resulting set of equations are of the form

for all mistake suffices, p and

for all m e Mk, ,k'^k.
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The number of mistakes we are allowing for is finite, hence the generat-
ing function F^rf) must be rational. Furthermore, by the Perron-Frobenius
theorem, the smallest root of the denominator of that rational function must
be simple. As a result, the coefficients of the Taylor expansion of the F(^ are
asymptotic to Ca.N where a is the smallest positive root of the denominator
of F^. The ratios of consecutive coefficients converges to <x which in our
case is the connective constant for walks with finite memory.

9. FURTHER RESULTS

It is possible to apply this method to other lattices by adding strategic
mistakes. For example, the hexagonal lattice is nothing more than the simple
cubic lattice on 3 dimensions with certain bonds missing. If we define these
bonds as "mistakes, we can compute the generating function for walks on
this lattice. Here, we will take the following polygon in dimension 3 to be the
basis for the hexagonal lattice: 1, 2, 3, — 1, — 2, -3. Indeed, the two dimen-
sional representation of this polygon is a hexagon. Thus the mistakes are
[1,1], [1.-2], [1,3], [2,-1], [2,2], [2, -3], [3, 1], [3,-2], [3,3],
[-1, -1], [-1,2], [-1, -3], [-2,1], [-2, -2], [-2,3], [-3,-1],
[ — 3, 2], [—3, —3]. Note that if we begin at the origin and disallow these
steps, we actually end up with 2 distinct sets of walks, one using the bonds
mentioned above, and the other on the compliment of those bonds. This is
because of the fact that our method cannot impose a condition on the first
step of the walk, which in this case would have to be either 1, 3, or —2. So
we must divide each term of our generating function by 2 except the s° term.
We achieve this by dividing by 2 then adding \. The author has as yet
achieved no new bounds for this lattice. It is hoped that this method may be
applied to this (and other) lattices to achieve further results.

10. SUMMARY OF RESULTS

Table 1 shows the best results we have obtained thus far for upper
bounds of the connective constant in dimensions 2-6. The memories are
given as well as the term used(«) for obtaining the ration given.

The numbers under the "wth root heading in the above table were com-
puted using the bound (cn)/(c1)1/ ("~l) which is attributed to Aim in (15).
Here we use cn<k. As was stated earlier, cn<k> cn and so the bound still holds.

The numbers under the "ratios" heading in the above table are the
limits of ^ ( k ) = \imn^x(c(ndl)/(c(ndliik), where cdn k is the number of finite-
memory, with memory k, rc-step self-avoiding walks in Zd. By the Perron-
Frobenius theorem, we know (since for finite memory we have a finite
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Markov Chain with a finite transfer matrix, with non-negative coefficients),
that c^l = C(n(^)n + O(v"), for some constant C (that depends of course on
d and k, but not on n, and |v| </;), and hence the above ratios converge
exponentially fast to ju(/f\ This is corroborated by the computer output. For
example the ratios for d = 2, and k=\6, all the ratios for «= 151,..., 158 are
equal to 2.6938489215954184982053622762451.... This is in sharp contrast to
the situation for genuine self-avoiding walks, where the asymptotics is
known, and the conjectured asymptotics imply very slow convergence of the
ratios.

While we do not have rigorous error bounds for the rate of con-
vergence, it is clear that the series expansion, for any fixed memory, £=16
in our case, could be continued indefinitely with a polynomial time (in fact
0(1) per term, and counting bit-operations, O(log«)), per each extra term,
so eventually we would be able to use the «th root bound to any desired
precision, with a polynomial cost. (The analogous situation for SAWs
requires exponential effort!)

However, with a larger computer, and a more efficient implementation
in a lower-level programming language, such as C, one would be able, with
the present approach, to achieve higher memories, that would improve the
present upper bounds even further, we did not bother to go that far. If one
wishes to go really far, one can use modular methods and the Chinese
Remainder Theorem, as it was done in ref. 2, which also has the advantage
that the computations are parallelizable.

Comparing our results with previous results, we see the largest gains are
in high dimensions. It is hoped that extensions of this method may yield bet-
ter gains in dimensions 2 and 3. One such extension would be the construc-
tion of a set of mistakes (in dimension 2 or 3) for which we are able to easily
determine the interactions which are necessary for implementing this
method. In dimension 2, the set of all rectangles up to a given size, say up
to « x n, is one set of mistakes which allow an easy implementation of this

Table 1. Computed Bounds for the Connective Constants

New bounds

Dimension

2
3
4
5
6

Estimate

2.638l585[3]
4.6839066[ 1 1 ]
6.7720[7]
8.8386l[8]

I0.87879[8]

Previous bound

2.6958[ I ]
4.7560[ I ]
6.8320[ I ]
8.8808[ I ]

10.9025[1]

Ratios

2.6939
4.7476
6.8179
8.8602

10.8886

«th root

2.7054
4.7520
6.8188
8.8608

10.8893

Memory

16
14
10
10
10

n

158
108
648
698
448



method. The bound obtained from the generating function for walks avoid-
ing such a list of mistakes is too large to be of interest in this context.

Other results obtained from this study include the exact enumeration of
walks that are self-avoiding with certain memories. Tables of these results are
too massive for printing but may be obtained at the World Wide Web site
listed below.

Note. A small Maple package accompanying this paper, saw.maple,
can be obtained by using your favorite world wide web browser at http://
www.math.temple.edu/ noonan/saw/ or by anonymous ftp to ftp.math.
temple.edu, directory /pub/noonan. Exact enumerations, generating func-
tions and other information may also be obtained at the above site.
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